On-line učionica

26. januar 2012.

Grafici sinusne funkcije

Filed under: II razred,Matematika — jelena100janovic @ 9:37 pm

Do sada ste već naučili specifične vrednosti sinusa, kosinusa i tangensa određenih uglova. U matematici, često možemo dosta naučiti posmatrajući kako se jedna veličina menja u odnosu na drugu. Posmatraćemo sinus kao funkciju ugla. Setite se od ranije da je sinus ugla u standardnom položaju odnos y/r, gde je y odgovarajuća koordinata tačke na krugu, a r rastojanje te tačke od koordinatnog početka.

Pošto je sinus isti za dati ugao, bez obzira na dužinu poluprečnika r, možemo koristiti jedinični krug kao osnovu za sva računanja.

Imenilac razlomka je sada 1, pa imamo jednostavniji izraz, sin θ = y. Prednost ovoga je što možemo koristiti y-koordinatu tačke na jediničnom krugu da bi pratili vrednost sin θ kroz kompletnu rotaciju. Zamislite da počnemo od 0 i onda rotiramo u smeru suprotnom od kazaljke na satu i povećavamo ugao. S obzirom da je y-koordinata tačke vrednost sinusa ugla, posmatraćemo visinu dok rotiramo.

Kroz prvi kvadrant ta visina postaje veća, počevši od 0, brzo se povećavajući na početku, onda sporije dok ugao ne dostigne 90◦, u tom trenutku, visina je maksimalna, 1.

Kako se rotira kroz drugi kvadrant, visina počinje da opada ka nuli.

Dok rotacija prolazi kroz treći i četvrti kvadrant, dužina duži se povećava, ali ovog puta u negativnom smeru, spuštajući se do -1 u 270◦ i vraćajući se do nule u 360◦.

Posle jedne kompletne rotacije, iako se ugao i dalje povećava, vrednosti sinusa će se ponavljati. Isto bi se desilo da smo rotirali u smeru kazaljke na satu da bi proverili negativne uglove, pa je zato sinusna funkcija periodična. Period je 2π, jer se posle tog ugla vrednosti ponavljaju.

Prevedimo ovo rotaciono kretanje u grafik sinusa u funkciji ugla rotacije. Sledeća animacija demonstrira ovu vezu. Ona ucrtava (θ, sin θ) u koordinatni sistem kao (x, y).

Nakon što završimo jednu punu rotaciju, vrednosti počinju da se ponavljaju. Zato se sinusoida, ili „talas“, takođe ponavlja. Najlakši način da skicirate sinusoidu je da ucrtate tačke za uglove četvrtine kruga. Vrednost funkcije sin θ ide od 0 do 1 pa do 0 pa do -1 i nazad do 0. Nacrtano duž x-ose, to bi izgledalo ovako:

Popunjavanjem linije između tačaka i nastavljanje grafika preko 2π kao i negativnih uglova dobijamo grafik funkcije y = sin x gde je x proizvoljni ugao rotacije, u radijanima.

Kao što smo već pomenuli, sin x ima period od 2π. Trebalo bi takođe napomenuti da y-vrednosti nikada ne prelaze 1 niti padaju ispod -1, pa je kodomen sinusne funkcije [-1, 1]. Pošto uglovi mogu uzimati proizvoljne vrednosti i rotacija se može nastaviti beskonačno, pa je domen sin x skup svih realnih brojeva.

Napomena: Animacije urađene u GeoGebri. Ako ih „kradete“, usput „pokupite“ i link na ovu stranicu😀

6 komentara »

  1. И гифови су сјајни.

    Komentar od metodicar — 26. januar 2012. @ 9:55 pm | Odgovor

    • Zahvaljujem!😀 Trenutno sam oduševljena što su animacije proradile😀 Od sinoć se mučim, ali sam zato sada extra😀

      Komentar od jelena100janovic — 26. januar 2012. @ 10:17 pm | Odgovor

  2. Sjajno, oduševljena sam. Svaka čast autoru!

    Komentar od agroekonomija — 22. februar 2012. @ 10:31 am | Odgovor

  3. Svaka cast! Samo na zalost, sve je manje klinaca koje ovo interesuje!

    Komentar od Dragan — 26. maj 2012. @ 4:38 pm | Odgovor

    • Hvala. Što se interesovanja učenika tiče, meni se čini da se situacija polako popravlja u zadnjih godinu-dve. Ne znam, ali sam optimista🙂

      Komentar od jelena100janovic — 26. maj 2012. @ 5:20 pm | Odgovor


RSS feed for comments on this post. TrackBack URI

Ostavite odgovor

Popunite detalje ispod ili pritisnite na ikonicu da biste se prijavili:

WordPress.com logo

Komentarišet koristeći svoj WordPress.com nalog. Odjavite se / Promeni )

Slika na Tviteru

Komentarišet koristeći svoj Twitter nalog. Odjavite se / Promeni )

Fejsbukova fotografija

Komentarišet koristeći svoj Facebook nalog. Odjavite se / Promeni )

Google+ photo

Komentarišet koristeći svoj Google+ nalog. Odjavite se / Promeni )

Povezivanje sa %s

Create a free website or blog at WordPress.com.

%d bloggers like this: